Skip to main content

Currently Offered Courses - Spring 2025

ASTR 100 - Introduction to Astronomy

Introduces the student to the basic concepts of modern astronomy. Covers topics including the night sky; the solar system and its origin; the nature and evolution of stars; stellar remnants, including white dwarfs, neutron stars, and black holes; extrasolar planetary systems; galaxies and quasars; dark matter and dark energy; the Big Bang and the fate of the universe; and life in the universe. Credit is not given for ASTR 100 if credit in any of ASTR 121, ASTR 122, ASTR 210, or equivalent has been earned. Students with credit in PHYS 211 are encouraged to take ASTR 210.

ASTR 121 - Solar System and Worlds Beyond

Introductory survey of the Solar System; structure and motions of the Earth and Moon; planetary motions; natures and characteristics of the planets and smaller solar system bodies; planetary moons and rings; meteors, meteoroids, and meteorites; properties of the Sun; origin and evolution of the Solar System; discovery of extrasolar planetary systems; architecture of extrasolar planetary systems and comparison to our solar system; habitable extrasolar planets. Emphasis will be placed on problem-solving and scientific methods. Credit is not given for ASTR 121 if credit in either ASTR 100 or ASTR 210 has been earned. Students with credit in PHYS 211 are encouraged to take ASTR 210.

ASTR 122 - Stars and Galaxies

Introduction to celestial objects and phenomena beyond the Solar System, and their governing basic physical principles; galaxies, quasars, and structure of the universe; dark matter and dark energy; the Big Bang and the fate of the universe; the Milky Way; the interstellar medium and the birth of stars; stellar distances, motions, radiation, structure, evolution, and remnants, including neutron stars and black holes. Emphasis will be placed on problem-solving and scientific methods. Credit is not given for ASTR 122 if credit in either ASTR 100 or ASTR 210 has been earned. Students with credit in PHYS 211 are encouraged to take ASTR 210.

ASTR 150 - Killer Skies: Astro-Disasters

Exploration of the most dangerous topics in the Universe, such as meteors, supernovae, gamma-ray bursts, magnetars, rogue black holes, colliding galaxies, quasars, and the end of the Universe, to name just a few.

ASTR 210 - Introduction to Astrophysics

Survey of modern astronomy for students with background in physics. Topics include: the solar system; nature and evolution of stars; white dwarfs, neutron stars, and black holes; galaxies, quasars and dark matter; large scale structure of the universe; the Big Bang; and Inflation. Emphasis will be on the physical principles underlying the astronomical phenomena. Prerequisite: PHYS 211.

ASTR 310 - Computing in Astronomy

An introduction to the use of computers in astrophysics research. Topics covered include a basic introduction to computing hardware concepts, Unix shell commands, programming in Python, data structures, astronomical libraries, modern software engineering concepts and tools, plotting and visualization of data, and fundamental numerical algorithms. Applications and examples drawn from astrophysics are stressed throughout. Prerequisite: PHYS 211; MATH 220; Credit or concurrent registration in ASTR 210.

ASTR 330 - Extraterrestrial Life

Scientific discussion of the search for extraterrestrial life. Topics include: cosmic evolution (protons to heavy elements to molecules); terrestrial evolution (chemical, biological, and cultural); high technology searches for extraterrestrial life in the solar system (Mars, Venus, outer planets); and beyond the solar system (Drake equation and current SETI projects).

ASTR 390 - Individual Study

Individual study at an advanced undergraduate level. May be repeated in separate terms to a maximum of 8 hours. Prerequisite: Consent of advisor and of faculty member who supervises the work.

ASTR 401 - Scientific Writing for Astronomy

Development of journal-style writing skills. Papers written in accordance with The Astrophysical Journal or The Monthly Notices of the Royal Astronomical Society Manuals of Style on topics approved by the instructor. Emphasis on developing adequate and critical coverage of the topic, brevity compatible with clarity, and effective presentation. Proper sentence, paragraph, section and subsection structure (including Abstract and Introduction, Figures and Captions), citation, footnotes, and bibliography are covered. 3 undergraduate hours. No graduate credit. Prerequisite: Completion of campus Composition I general education requirement, and completion of at least one of the ASTR 404, ASTR 405, ASTR 406, and ASTR 414 courses. Recommended: Credit or concurrent enrollment in a second one of the following courses: ASTR 404, ASTR 405, ASTR 406, and ASTR 414. Restricted to undergraduate students.

ASTR 405 - Planetary Systems

Traces, from a physical perspective, the evolution of planetary systems from star formation in molecular clouds to the emergence of habitable worlds. Topics include the properties of HII regions and molecular clouds, gravitational collapse and disk formation, formation of planetesimals and planets, dynamics of the solar system, physics of planetary atmospheres, properties of individual planets and their rings and satellites, detection and characterization of extra-solar planets, and searches for life in the Solar System and beyond. 3 undergraduate hours. 3 graduate hours. Prerequisite: PHYS 212, ASTR 210, and ASTR 310 (or equivalent programming experience). Recommended: PHYS 213 and PHYS 214.

ASTR 406 - Galaxies and the Universe

Nature of the Milky Way galaxy: stellar statistics and distributions, stellar populations, spiral structure, the nucleus and halo. Nature of ordinary galaxies; galaxies in our Local Group, structure of voids and superclusters. Nature of peculiar objects: Seyfert galaxies, starburst galaxies, and quasars. Elementary aspects of physical cosmology. 3 undergraduate hours. 3 graduate hours. Prerequisite: PHYS 212, ASTR 210, and ASTR 310 (or equivalent programming experience). Recommended: PHYS 213 and PHYS 214.

ASTR 414 - Astronomical Techniques

Introduction to techniques used in modern optical and radio astronomy with emphasis on the physical and mathematical understanding of the detection of electromagnetic radiation; includes such topics as fundamental properties of radio and optical telescopes and the detectors that are used with telescopes. Lectures and laboratory. 4 undergraduate hours. 4 graduate hours. Prerequisite: PHYS 212, ASTR 210, and ASTR 310 (or equivalent programming experience). Recommended: PHYS 213 and PHYS 214.

ASTR 490 - Senior Thesis

Research with thesis, under the direction of a faculty member in astronomy. This course is recommended for all students who plan to do research and graduate study, and it is a prerequisite for graduation with highest distinction in astronomy. In the term preceding their initial enrollment, those interested in taking the course should consult with an academic advisor as well as the potential research advisor. A thesis must be presented for credit to be received. 3 undergraduate hours. No graduate credit. Prerequisite: Two 400-level Astronomy courses and consent of academic advisor and of faculty member who supervises the work. Intended for Astronomy majors of senior standing.

ASTR 496 - Seminar in Astronomy

Lectures on topics of current interest in astronomy and astrophysics; for advanced undergraduates and graduates. See Class Schedule for current topics. 1 to 4 undergraduate hours. 1 to 4 graduate hours. Approved for both letter and S/U grading. May be repeated. Prerequisite: Consent of instructor.

ASTR 506 - Galaxies

Survey of the different constituents of the Universe, including galaxies, active galaxies, galaxy clusters, and intergalactic gas. Particular emphasis will be placed on observable properties of the Milky Way and other galaxies, as well as relating such observations to the understanding of the dynamics and evolution of galaxies. Prerequisite: ASTR 406 or consent of instructor.

ASTR 510 - Computational Astrophysics

Prepares students to use numerical simulations to study complex problems in astrophysics and cosmology. Numerical methods and parallel computing will be covered together with the design, validation, and analysis of simulations. Emphasis is placed on solving ordinary and partial differential equations that arise in astrophysical contexts. Students work on assigned numerical problems and perform simulations using existing simulation codes, writing a final paper which presents the results of simulations using one of these codes. There are no formal prerequisites except knowledge of a scientific programming language such as Fortran, C, and C++. Familiarity with Unix/Linux and astronomical analysis tools is useful but not required.

ASTR 516 - General Relativity II

Same as PHYS 516. See PHYS 516.

ASTR 590 - Individual Study

Individual study or non-thesis research. May be repeated. Prerequisite: Consent of adviser and of faculty member who supervises the work.

ASTR 593 - Astronomy Internship

Full-time or part-time practice of graduate-level astronomy and astrophysics in an off-campus government, industrial, or research facility environment. Summary report required. 0 graduate hours. No professional credit. Approved for S/U grading only. May be repeated in separate terms. Prerequisite: Instructor approval required. International students on the F-1 visa must also seek CPT approval. 12 months of full-time CPT eliminates a student's eligibility for OPT. Intended for graduate students who require an internship course.

ASTR 596 - Seminar in Special Topics

Approved for both letter and S/U grading. May be repeated. Prerequisite: Consent of instructor.

ASTR 599 - Thesis Research

Approved for S/U grading only. May be repeated.